
DISMANTLING THE
MONOLITH

BY: BARRY TARLTON WITH MUCH SUPPORT FROM HIS FRIEND JEFF CAIN

AGENDA

• History of Building Monoliths

• Problems that come with Monoliths

• How Microservices help over come monolithic challenges

• How Cloud Technologies enable a Microservices approach

• What are API’s and why are they so important

• How do we dissect the Monolithic problems into more
manageable pieces

• How do Business Analyst play a key role in all of this

QUICK INTRODUCTION

EDUCATION

• Elementary & High School:

• Basic Programming on
Apple IIe

HIGHER EDUCATION

Graduated either from the
College of Engineering or
College of Cosmetology…

I’ll let you guess?

• 6 Years

• Retirement
Applications for
Public Sector

NATIONWIDE 12+ YEARS

Retirement App

MY FIRST MONOLITHIC APPLICATION – RELEASE 1

• Dependent’s data

• Calculate Years of Service

• Employment History

• Retiree Data

• Employee Contributions

Retirement App

SECOND RELEASE

• Dependent’s data

• Calculate Years of Service

• Employment History

• Retiree Data

• Employee Contributions

• Employer Contributions

• Calculate Interest

• Retirement Plans

Retirement App

THIRD RELEASE

• Dependent’s data

• Calculate Years of Service

• Employment History

• Retiree Data

• Employee Contributions

• Employer Contributions

• Calculate Interest

• Retirement Plans

• Document History

• Calculate Years of Service

• Non-contributory work history

• Address History

Retirement App

FOURTH RELEASE

• Dependent’s data

• Calculate Years of Service

• Employment History

• Retiree Data

• Employee Contributions

• Employer Contributions

• Calculate Interest

• Retirement Plans

• Document History

• Calculate Years of Service

• Non-contributory work history

• Address History

• Benefits Estimates

• Retirement Options

• Benefit Calculations

• Beneficiary Management

Retirement App

FIFTH RELEASE

• Dependent’s data

• Calculate Years of Service

• Employment History

• Retiree Data

• Employee Contributions

• Employer Contributions

• Calculate Interest

• Retirement Plans

• Document History

• Calculate Years of Service

• Non-contributory work history

• Address History

• Benefits Estimates

• Retirement Options

• Benefit Calculations

• Beneficiary Management

• Self Service Employment Hist

• Pension Summary

• Retirement Planning

• Self Service Member Data

• Credit Summary

• Banked Hours

• Email Notifications

• Eligibility Calculations

Monolith AppWHAT IS A MONOLITH?

• Dependent’s data
• Calculate Years of Service

• Employment History
• Retiree Data

• Employee Contributions
• Employer Contributions

• Calculate Interest
• Retirement Plans

• Document History

• Calculate Years of Service

• Non-contributory work history

• Address History

• Benefits Estimates
• Retirement Options

• Benefit Calculations

• Beneficiary Management

• Self Service Employment Hist

• Pension Summary
• Retirement Planning

• Self Service Member Data

• Credit Summary
• Banked Hours

• Email Notifications

• Eligibility Calculations

JUST TOO MUCH
TO TAKE IN

DIFFICULT TO
MAINTAIN

My App

Capability A
Capability B

Capability C

Capability D

Capability E

BRITTLE

• Adding new features are difficult.

• Achieving Reliability Becomes
Extremely Challenging

MONOLITHS ARE DIFFICULT TO SCALE

The App

Service A Service B

Service X Service Y

DIFFICULT TO SCALE

The App

Service
A

Service
B

Service
X

Service Y

DIFFICULT TO SCALE

The App

Service
A

Service
B

Service
X

Service Y

The App

Service
A

Service
B

Service
X

Service Y

DIFFICULT TO SCALE

The App

Service
A

Service
B

Service
X

Service
Y

The App

Service
A

Service
B

Service
X

Service
Y

The App

Service
A

Service
B

Service
X

Service
Y

The App

Service
A

Service
B

Service
X

Service
Y

DEPLOYING A MONOLITH

• “Once your application has become a large, complex monolith,
your development organization is probably in a world of pain. Any
attempts at agile development and delivery will flounder. One
major problem is that the application is overwhelmingly complex.
It’s simply too large for any single developer to fully understand.
As a result, fixing bugs and implementing new features correctly
becomes difficult and time consuming. What’s more, this tends to
be a downwards spiral. If the codebase is difficult to understand,
then changes won’t be made correctly. You will end up with a
monstrous, incomprehensible big ball of mud.”

• - Chris Richardson –founder Cloud Foundry (https://www.nginx.com/blog/introduction-to-microservices/)

https://www.nginx.com/blog/introduction-to-microservices/

EXAMPLE OF
CHANGING MARKET
DEMAND

MOST CONVENIENT
FEATURE?

Source: https://thefinancialbrand.com/69180/2018-top-banking-trends-predictions-outlook-digital-fintech-data-ai-cx-payments-tech/all/

https://thefinancialbrand.com/69180/2018-top-banking-trends-predictions-outlook-digital-fintech-data-ai-cx-payments-tech/all/

• “2018 will see banks getting much
more serious about digitizing their
current analog processes with a
particular focus on their
commercial customers and on
mobile. Loan processing, account
opening, service subscriptions,
problem resolution and one-to-
many payments are all examples
of current processes that are ripe
to be reimagined in order to gain
speed, efficiency, and scale.”

• – Chris Nichols, Chief Strategy Officer at CenterState
Bank

• Source: https://thefinancialbrand.com/69180/2018-top-
banking-trends-predictions-outlook-digital-fintech-data-ai-cx-
payments-tech/all/

https://www.linkedin.com/pub/chris-nichols/2/198/8a5
https://www.centerstatebank.com/
https://thefinancialbrand.com/69180/2018-top-banking-trends-predictions-outlook-digital-fintech-data-ai-cx-payments-tech/all/

• “Those who were using microservices
listed scalability and faster
deployments as the leading factors,
followed by the ability to improve
quality by having teams focusing on
smaller parts of the app. ”

• - Source: DZone Research: Microservices Priorities and
Trends

https://dzone.com/articles/dzone-research-microservices-priorities-and-trends

WHAT IS A
MICROSERVICE?

• The microservice
architecture uses
services as the unit
of modularity.

MONOLITH VS MICROSERVICE

My Monolith Application

Business
Capability ONE

Business
Capability TWO

Business
Capability THREE

MONOLITH VS MICROSERVICE

My Monolith Application

Business
Capability ONE

Business
Capability TWO

Business
Capability THREE

Business
Capability THREE

MONOLITH VS MICROSERVICE

My Monolith Application

Business
Capability ONE

Business
Capability TWO

Business
Capability THREE

MONOLITH VS MICROSERVICE

My Monolith Application

Business
Capability TWO

Business
Capability THREE

Functionality
A

Functionality
B

Functionality
C

MONOLITH VS MICROSERVICE

My Monolith Application

Business
Capability TWO

Business
Capability THREE

MicroService
A

MicroService
B

MicroService
C

MONOLITH VS MICROSERVICE

My Monolith Application

Business
Capability ONE

Business
Capability TWO

Business
Capability THREE

MicroService
A

MicroService
B

MicroService
C

MONOLITH VS MICROSERVICE

MicroService
A

MicroService
B

MicroService
X

MicroService
Y

MicroService
C

MicroService
Z

MicroService
D

MICROSERVICES A PLENTY

MicroService
A

MicroService
B

MicroService
X

MicroService
Y

MicroService
C

MicroService
Z

MicroService
D

MICROSERVICES A PLENTY

MicroService
X

MicroService
Y

MicroService
C

MicroService
Z

MicroService
B

MicroService
A

MicroService
D

NEEDS INFRASCTRUCTURE

MicroService A

MicroService A

MicroService A

Source: https://www.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/

CLOUD SERVICE ENABLE
MICROSERVICES

You can have it all when you
want it!

• Infrastructure

• Application servers

• Databases

• Scalability

• Fail/Over

• Etc…

MICROSERVICE
STRONG BOUNDARY

• A service has an
impermeable boundary that
is difficult to violate. As a
result, the modularity of the
application is much easier to
preserve over time.

• Microservices represent the
business capabilities which is
why the Analyst is key in
helping to identify them.

MICROSERVICES
NOT TIGHTLY
COUPLED

• A key characteristic of the
microservice architecture
is that the services are
loosely coupled. Not
highly dependent on the
internals of each other.

TALKING TO MICROSERVICES VIA APIS

• “Many companies are using microservices to encapsulate key
capabilities within the organization in a way that is scalable and
reliable. Microservices represent the important functional
elements of your company’s IT. But that is just part of the story.
You also need the ability to expose these capabilities in a way that
makes it easy to solve current business challenges. And that is
where APIs come in.”

• - Mike Amundsen from “Microservices, APIs and Innovation: The Power of APIs”

• Source: https://thenewstack.io/microservices-apis-and-innovation-the-power-of-apis/

WHAT IS AN API
APPLICATION PROGRAMMING INTERFACE

SO WHAT IS A AN API
REALLY?

• Just a way to send
information between
applications

• Typically using HTTP and
the message format is
usually JSON

XML VS JSON

API’S IN ACTION

Bank Account
Microservice

A
P
I

This Photo by Unknown Author is licensed under CC BY-SA

HTTP Request to
http://mybank.com/

apis/accounts

Request to Get Accounts

Returns Account List

How do we define this?

{
"AccountList":[

{
"id":123,
"name":"Checking",
"total":1500.00

},
{

"id":456,
"name":"Saving",
"total":2989.68

}
]

}

API Definition is
Crucial

https://commons.wikimedia.org/wiki/File:Mobile-Smartphone-icon.png
https://creativecommons.org/licenses/by-sa/3.0/

GET YOUR SWAGGER ON!

EXAMPLE
SWAGGER /
OAS
DOCUMENT

MICROSERVICES COMMUNICATING

MicroService
A

MicroService
B

MicroService
X

MicroService
C

A
P
I

A
P
I

A
P
I

This Photo by Unknown Author is licensed under CC BY-SA

API

http://pl.wikimedia.org/wiki/plik:mobile_phone_font_awesome.svg
https://creativecommons.org/licenses/by-sa/3.0/

BREAKING IT DOWN?

• An architectural style that functionally
decomposes an application into a set of
services.

• What matters is that each service has a
focused, cohesive set of responsibilities

BREAK IT DOWN

BREAKING APART THE MONOLITH

My Monolith Application

Business
Capability ONE

Business
Capability TWO

Business
Capability THREE

Business
Capability FOUR

Business
Capability FIVE

MONOLITH VS MICROSERVICE

MicroService
A

MicroService
B

MicroService
X

MicroService
Y

MicroService
C

MicroService
Z

MicroService
D

HOW DO
WE BREAK

IT OUT?
LEARN FROM DOMAIN

DRIVEN DESIGN

Domain Driven Design (DDD) is focused around the idea of solving
business problems through software and ensuring the essential
complexity of the problem is understood when building the solution

• DDD outputs a domain model that is used to break apart a
business problem into its core components in order to build
software oriented around the business solution

• DDD Key Tenets
• Understanding the Core Domain
• Properly Identifying Sub Domains
• Using a Ubiquitous Language
• Creating Bounded Contexts

BREAKING INTO DOMAINS

DOMAINS IN AMAZON

EXISTING ORGANIZATION STRUCTURE CAN DEFINE
DOMAINS

Customer Relationship
Management

Customer Assistance Policy Management

Billing And Collections Claims Processing Loan Management

SUB DOMAINS IN SHOPPING SERVICE

Product Catalog
Management

Order / Shopping
Cart Management

Delivery /
Shipping services

Payment
Processing

Inventory
Management

IDENTIFYING SUB-DOMAINS INVOLVED IN PROBLEM

• The Business Domain Model starts
by identifying the key Sub-Domain
to be used as the anchor point
defining the Problem space

• Through the coarse of exploring
the problem, additional Sub-
Domains will be identified as being
involved in the Problem space

• These Sub-Domains are then
added to the Domain Model to
provide a comprehensive high-
level view of the Problem space

SUMMARIZING DOMAINS

Business Domain

• The Domain is the world of the

business being supported, their

ideas, knowledge and information

• The Domain is the problem area

being addressed

• A Domain can be decomposed

into sub-domains which typically

reflect the organizational

structure

“Organizations which design systems are constrained to

produce designs which are copies of the communication

structures of these organizations.”

Melvin Conway How Do Committees Invent? (1968)

Business Solution

• The Model is an abstraction of

the Domain articulating what is

necessary to satisfy the

requirements

• The Model is your solution to the

problem

• The Model is a simplification of

the bigger picture with the

important aspects of the solution

being concentrated on while

ignoring everything else

BA’s may not be directly
responsible for building
this domain model, but

the information they
gather will be critical in

the proper creation of it.

Sub Domain 1 Sub Domain 2

This Photo by Unknown Author
is licensed under CC BY-NC

Core Domain

Sub Domain 3

http://www.legal.adv.br/20150310/atleta-urbano-mesmo-sem-querer/
https://creativecommons.org/licenses/by-nc/2.5/

UBIQUITOUS LANGUAGE:
SPEAKING CLEARLY

• The Business Domain experts, the Developers, and the
Analyst all use the same language when discussing the
domain.

• When someone says something about the domain,
others should understand precisely what they mean

• Ex: A “Product” is referred to always as a “Product”
within that Sub Domain. In discussions with the
business as well as with the developers. Developers
won’t call a “Product” an “Item” in the code or
anywhere else, so that the communication is always
clear and focused around the business problem.

BUSINESS ANALYSTS ARE KEY

• Identifying the Ubiquitous language within a sub domain helps
identify the context.

• If you are using the same words for different things, you may
have jumped contexts.

• The identification of terms within the Sub Domain help you
identify the boundaries of different context or what we call
“Bounded Context”.

• The Bounded Context is what architects and Developers can
use to effectively model the solution.

BOUNDED CONTEXTS HELP IDENTIFY BOUNDARIES
AROUND CAPABILITIES

• As you try to model a larger domain, it gets
progressively harder to build a single unified
model. Different groups of people will use
subtly different vocabularies in different parts
of a large organization.

• A Bounded Context is the boundary around a
model that uses a single context to define the
language used for the design components

• Bounded Contexts have both unique concepts
(such as a support ticket only existing in a
customer support context) but also shared
concepts (such as products and customers)

• Different contexts may have completely
different models of shared concepts with
mechanisms to map between these concepts
for integration

https://martinfowler.com/bliki/BoundedContext.html

• Monoliths hinder flexibility, speed to
market, continuous delivery, and
scalability.

• A well designed MicroServices approach
can alleviate many of these problems.

• However, this requires a proper
dissection of the Problem Domain into
Sub Domains.

• This requires BA’s to help define a
Ubiquitous Language to help create a
Bounded Context for the proper solution
of the business problem.

• Whether you are dismantling an existing
Monolith or trying to avoid building a
new one, understanding Bounded
Contexts are key.

